extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1C23 = C2×D4⋊2S3 | φ: C23/C2 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).1C2^3 | 96,210 |
(C2×C6).2C23 = D4⋊6D6 | φ: C23/C2 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).2C2^3 | 96,211 |
(C2×C6).3C23 = S3×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).3C2^3 | 96,215 |
(C2×C6).4C23 = D4○D12 | φ: C23/C2 → C22 ⊆ Aut C2×C6 | 24 | 4+ | (C2xC6).4C2^3 | 96,216 |
(C2×C6).5C23 = Q8○D12 | φ: C23/C2 → C22 ⊆ Aut C2×C6 | 48 | 4- | (C2xC6).5C2^3 | 96,217 |
(C2×C6).6C23 = C6×C4○D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).6C2^3 | 96,223 |
(C2×C6).7C23 = C3×2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).7C2^3 | 96,224 |
(C2×C6).8C23 = C3×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).8C2^3 | 96,225 |
(C2×C6).9C23 = C4×Dic6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).9C2^3 | 96,75 |
(C2×C6).10C23 = C12⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).10C2^3 | 96,76 |
(C2×C6).11C23 = C12.6Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).11C2^3 | 96,77 |
(C2×C6).12C23 = S3×C42 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).12C2^3 | 96,78 |
(C2×C6).13C23 = C42⋊2S3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).13C2^3 | 96,79 |
(C2×C6).14C23 = C4×D12 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).14C2^3 | 96,80 |
(C2×C6).15C23 = C4⋊D12 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).15C2^3 | 96,81 |
(C2×C6).16C23 = C42⋊7S3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).16C2^3 | 96,82 |
(C2×C6).17C23 = C42⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).17C2^3 | 96,83 |
(C2×C6).18C23 = C23.16D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).18C2^3 | 96,84 |
(C2×C6).19C23 = Dic3.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).19C2^3 | 96,85 |
(C2×C6).20C23 = C23.8D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).20C2^3 | 96,86 |
(C2×C6).21C23 = S3×C22⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).21C2^3 | 96,87 |
(C2×C6).22C23 = Dic3⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).22C2^3 | 96,88 |
(C2×C6).23C23 = D6⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).23C2^3 | 96,89 |
(C2×C6).24C23 = C23.9D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).24C2^3 | 96,90 |
(C2×C6).25C23 = Dic3⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).25C2^3 | 96,91 |
(C2×C6).26C23 = C23.11D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).26C2^3 | 96,92 |
(C2×C6).27C23 = C23.21D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).27C2^3 | 96,93 |
(C2×C6).28C23 = Dic6⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).28C2^3 | 96,94 |
(C2×C6).29C23 = C12⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).29C2^3 | 96,95 |
(C2×C6).30C23 = Dic3.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).30C2^3 | 96,96 |
(C2×C6).31C23 = C4.Dic6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).31C2^3 | 96,97 |
(C2×C6).32C23 = S3×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).32C2^3 | 96,98 |
(C2×C6).33C23 = C4⋊C4⋊7S3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).33C2^3 | 96,99 |
(C2×C6).34C23 = Dic3⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).34C2^3 | 96,100 |
(C2×C6).35C23 = D6.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).35C2^3 | 96,101 |
(C2×C6).36C23 = C12⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).36C2^3 | 96,102 |
(C2×C6).37C23 = D6⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).37C2^3 | 96,103 |
(C2×C6).38C23 = C4.D12 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).38C2^3 | 96,104 |
(C2×C6).39C23 = C4⋊C4⋊S3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).39C2^3 | 96,105 |
(C2×C6).40C23 = C2×C4×Dic3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).40C2^3 | 96,129 |
(C2×C6).41C23 = C2×Dic3⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).41C2^3 | 96,130 |
(C2×C6).42C23 = C12.48D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).42C2^3 | 96,131 |
(C2×C6).43C23 = C2×C4⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).43C2^3 | 96,132 |
(C2×C6).44C23 = C23.26D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).44C2^3 | 96,133 |
(C2×C6).45C23 = C2×D6⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).45C2^3 | 96,134 |
(C2×C6).46C23 = C4×C3⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).46C2^3 | 96,135 |
(C2×C6).47C23 = C23.28D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).47C2^3 | 96,136 |
(C2×C6).48C23 = C12⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).48C2^3 | 96,137 |
(C2×C6).49C23 = D4×Dic3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).49C2^3 | 96,141 |
(C2×C6).50C23 = C23.23D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).50C2^3 | 96,142 |
(C2×C6).51C23 = C23.12D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).51C2^3 | 96,143 |
(C2×C6).52C23 = C23⋊2D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).52C2^3 | 96,144 |
(C2×C6).53C23 = D6⋊3D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).53C2^3 | 96,145 |
(C2×C6).54C23 = C23.14D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).54C2^3 | 96,146 |
(C2×C6).55C23 = C12⋊3D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).55C2^3 | 96,147 |
(C2×C6).56C23 = Dic3⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).56C2^3 | 96,151 |
(C2×C6).57C23 = Q8×Dic3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).57C2^3 | 96,152 |
(C2×C6).58C23 = D6⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).58C2^3 | 96,153 |
(C2×C6).59C23 = C12.23D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).59C2^3 | 96,154 |
(C2×C6).60C23 = C2×C6.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).60C2^3 | 96,159 |
(C2×C6).61C23 = C24⋊4S3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).61C2^3 | 96,160 |
(C2×C6).62C23 = C22×Dic6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).62C2^3 | 96,205 |
(C2×C6).63C23 = S3×C22×C4 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).63C2^3 | 96,206 |
(C2×C6).64C23 = C22×D12 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).64C2^3 | 96,207 |
(C2×C6).65C23 = C2×C4○D12 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).65C2^3 | 96,208 |
(C2×C6).66C23 = C2×S3×Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).66C2^3 | 96,212 |
(C2×C6).67C23 = C2×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).67C2^3 | 96,213 |
(C2×C6).68C23 = Q8.15D6 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).68C2^3 | 96,214 |
(C2×C6).69C23 = C23×Dic3 | φ: C23/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).69C2^3 | 96,218 |
(C2×C6).70C23 = C6×C22⋊C4 | central extension (φ=1) | 48 | | (C2xC6).70C2^3 | 96,162 |
(C2×C6).71C23 = C6×C4⋊C4 | central extension (φ=1) | 96 | | (C2xC6).71C2^3 | 96,163 |
(C2×C6).72C23 = C3×C42⋊C2 | central extension (φ=1) | 48 | | (C2xC6).72C2^3 | 96,164 |
(C2×C6).73C23 = D4×C12 | central extension (φ=1) | 48 | | (C2xC6).73C2^3 | 96,165 |
(C2×C6).74C23 = Q8×C12 | central extension (φ=1) | 96 | | (C2xC6).74C2^3 | 96,166 |
(C2×C6).75C23 = C3×C22≀C2 | central extension (φ=1) | 24 | | (C2xC6).75C2^3 | 96,167 |
(C2×C6).76C23 = C3×C4⋊D4 | central extension (φ=1) | 48 | | (C2xC6).76C2^3 | 96,168 |
(C2×C6).77C23 = C3×C22⋊Q8 | central extension (φ=1) | 48 | | (C2xC6).77C2^3 | 96,169 |
(C2×C6).78C23 = C3×C22.D4 | central extension (φ=1) | 48 | | (C2xC6).78C2^3 | 96,170 |
(C2×C6).79C23 = C3×C4.4D4 | central extension (φ=1) | 48 | | (C2xC6).79C2^3 | 96,171 |
(C2×C6).80C23 = C3×C42.C2 | central extension (φ=1) | 96 | | (C2xC6).80C2^3 | 96,172 |
(C2×C6).81C23 = C3×C42⋊2C2 | central extension (φ=1) | 48 | | (C2xC6).81C2^3 | 96,173 |
(C2×C6).82C23 = C3×C4⋊1D4 | central extension (φ=1) | 48 | | (C2xC6).82C2^3 | 96,174 |
(C2×C6).83C23 = C3×C4⋊Q8 | central extension (φ=1) | 96 | | (C2xC6).83C2^3 | 96,175 |
(C2×C6).84C23 = Q8×C2×C6 | central extension (φ=1) | 96 | | (C2xC6).84C2^3 | 96,222 |